Search results for "acid transporters"

showing 10 items of 34 documents

Human cationic amino acid transporter hCAT-3 is preferentially expressed in peripheral tissues.

2001

At least five distinct carrier proteins form the family of mammalian cationic amino acid transporters (CATs). We have cloned a cDNA containing the complete coding region of human CAT-3. hCAT-3 is glycosylated and localized to the plasma membrane. Transport studies in Xenopus laevis oocytes revealed that hCAT-3 is selective for cationic L-amino acids and exhibits a maximal transport activity similar to other CAT proteins. The apparent substrate affinity and sensitivity to trans-stimulation of hCAT-3 resembles most closely hCAT-2B. This is in contrast to rat and murine CAT-3 proteins that have been reported to display a very low activity and to be inhibited by neutral and anionic L-amino acid…

MaleDNA ComplementaryGene ExpressionThymus GlandIn Vitro TechniquesBiochemistryCell LineMiceXenopus laevisComplementary DNACoding regionAnimalsHumansTissue DistributionAmino acid transporterAmino Acid SequenceCationic Amino Acid Transporterschemistry.chemical_classificationCATSBase SequenceChemistryCationic polymerizationBrainMembrane ProteinsAmino acidRatsBiochemistryCarrier proteinOocytesAmino Acid Transport Systems BasicFemaleCarrier ProteinsBiochemistry
researchProduct

Transport of C(4)-dicarboxylates in Wolinella succinogenes.

2000

ABSTRACT C 4 -dicarboxylate transport is a prerequisite for anaerobic respiration with fumarate in Wolinella succinogenes , since the substrate site of fumarate reductase is oriented towards the cytoplasmic side of the membrane. W. succinogenes was found to transport C 4 -dicarboxylates (fumarate, succinate, malate, and aspartate) across the cytoplasmic membrane by antiport and uniport mechanisms. The electrogenic uniport resulted in dicarboxylate accumulation driven by anaerobic respiration. The molar ratio of internal to external dicarboxylate concentration was up to 10 3 . The dicarboxylate antiport was either electrogenic or electroneutral. The electroneutral antiport required the prese…

Anaerobic respirationAntiporterPhysiology and MetabolismMutantMalatesBiologymedicine.disease_causeMicrobiologyCell membraneElectron TransportOxygen ConsumptionBacterial ProteinsFumaratesRespirationmedicineDicarboxylic AcidsAnaerobiosisMolecular BiologyEscherichia coliDicarboxylic Acid TransportersAspartic AcidNitratesEscherichia coli ProteinsCell MembraneSodiumMembrane ProteinsBiological TransportSuccinatesFumarate reductaseElectron transport chainWolinellamedicine.anatomical_structureBiochemistryMutagenesisCarrier ProteinsGene DeletionJournal of bacteriology
researchProduct

Multi-Functional Nanogels for Tumor Targeting and Redox-Sensitive Drug and siRNA Delivery

2016

(1) Background: A new family of nanosystems able to discern between normal and tumor cells and to release a therapeutic agent in controlled way were synthetized by e-beam irradiation. This technique permits to obtain biocompatible, sterile, carboxyl-functionalized polyvinylpyrrolidone (PVP-co-acrylic acid) nanogels (NGs); (2) Methods: Here, we performed a targeting strategy based on the recognition of over-expressed proteins on tumor cells, like the folate receptor. The selective targeting was demonstrated by co-culture studies and flow cytometry analysis, using folate conjugated NGs. Moreover, nanoparticles were conjugated to a chemotherapeutic drug or to a pro-apoptotic siRNA through a gl…

PVPPharmaceutical ScienceNanogels02 engineering and technologyPharmacology01 natural sciencesAntioxidantsAnalytical Chemistryfolate-targetingPolyethylene GlycolsNanogelchemistry.chemical_compoundMiceRNA interferenceNeoplasmsDrug DiscoveryFluorescence microscopePolyethyleneimineRNA Small InterferingCytotoxicitymedicine.diagnostic_testPovidone021001 nanoscience & nanotechnologyControlled releaseCell biologyChemistry (miscellaneous)Folate receptorMolecular Medicinee-beamGSH-responsive release0210 nano-technologyOxidation-Reduction010402 general chemistrydoxorubicinArticleFlow cytometryFolic AcidCell Line TumormedicineAnimalsHumansPhysical and Theoretical ChemistryParticle SizeOrganic ChemistryGlutathione0104 chemical scienceschemistryPVP; nanogels; e-beam; folate-targeting; doxorubicin; siRNA; GSH-responsive releasesiRNACancer cellNIH 3T3 CellsNanoparticlesSettore CHIM/07 - Fondamenti Chimici Delle TecnologieFolic Acid TransportersHeLa CellsMolecules
researchProduct

The Fumarate/Succinate Antiporter DcuB of Escherichia coli Is a Bifunctional Protein with Sites for Regulation of DcuS-dependent Gene Expression

2008

DcuB of Escherichia coli catalyzes C4-dicarboxylate/succinate antiport during growth by fumarate respiration. The expression of genes of fumarate respiration, including the genes for DcuB (dcuB) and fumarate reductase (frdABCD) is transcriptionally activated by C4-dicarboxylates via the DcuS-DcuR two-component system, comprising the sensor kinase DcuS, which contains a periplasmic sensing domain for C4-dicarboxylates. Deletion or inactivation of dcuB caused constitutive expression of DcuS-regulated genes in the absence of C4-dicarboxylates. The effect was specific for DcuB and not observed after inactivation of the homologous DcuA or the more distantly related DcuC transporter. Random and s…

AntiporterMutantlac operonBiologymedicine.disease_causePeptide MappingBiochemistryAntiportersFumaratesEscherichia colimedicineMolecular BiologyEscherichia coliDerepressionDicarboxylic Acid TransportersIon TransportEscherichia coli ProteinsMutagenesisSuccinatesGene Expression Regulation BacterialCell BiologyPeriplasmic spaceFumarate reductaseDNA-Binding ProteinsSuccinate DehydrogenaseAmino Acid SubstitutionBiochemistryGene Knockdown TechniquesMutagenesis Site-DirectedProtein KinasesTranscription FactorsJournal of Biological Chemistry
researchProduct

Polar Localization of a Tripartite Complex of the Two-Component System DcuS/DcuR and the Transporter DctA in Escherichia coli Depends on the Sensor K…

2014

The C4-dicarboxylate responsive sensor kinase DcuS of the DcuS/DcuR two-component system of E. coli is membrane-bound and reveals a polar localization. DcuS uses the C4-dicarboxylate transporter DctA as a co-regulator forming DctA/DcuS sensor units. Here it is shown by fluorescence microscopy with fusion proteins that DcuS has a dynamic and preferential polar localization, even at very low expression levels. Single assemblies of DcuS had high mobility in fast time lapse acquisitions, and fast recovery in FRAP experiments, excluding polar accumulation due to aggregation. DctA and DcuR fused to derivatives of the YFP protein are dispersed in the membrane or in the cytosol, respectively, when …

Yellow fluorescent proteinCardiolipinslcsh:MedicineMicrobiologyMreBMicrobial PhysiologyBacterial Physiologylcsh:ScienceCytoskeletonMicrobial MetabolismDicarboxylic Acid TransportersMultidisciplinaryEscherichia coli K12biologyBacterial GrowthEscherichia coli Proteinslcsh:RMicrobial Growth and DevelopmentBiology and Life SciencesFluorescence recovery after photobleachingBacteriologyFusion proteinTwo-component regulatory systemBacterial BiochemistryTransport proteinDNA-Binding ProteinsProtein TransportBiochemistryCytoplasmMultiprotein ComplexesBiophysicsbiology.proteinlcsh:QProtein KinasesResearch ArticleDevelopmental BiologyTranscription FactorsPLoS ONE
researchProduct

Activation of classical protein kinase C decreases transport via systems y+and y+L

2007

Activation of protein kinase C (PKC) downregulates the human cationic amino acid transporters hCAT-1 (SLC7A1) and hCAT-3 (SLC7A3) (Rotmann A, Strand D, Martiné U, Closs EI. J Biol Chem 279: 54185–54192, 2004; Rotmann A, Vekony N, Gassner D, Niegisch G, Strand D, Martine U, Closs EI. Biochem J 395: 117–123, 2006). However, others found that PKC increased arginine transport in various mammalian cell types, suggesting that the expression of different arginine transporters might be responsible for the opposite PKC effects. We thus investigated the consequence of PKC activation by phorbol-12-myristate-13-acetate (PMA) in various human cell lines expressing leucine-insensitive system y+[hCAT-1, h…

Amino Acid Transport System y+ArgininePhysiologyBiological Transport ActiveBiologyArginineEnzyme activatorLeucineCell Line TumorHumansRNA MessengerCationic Amino Acid TransportersProtein Kinase CProtein kinase CRegulation of gene expressionchemistry.chemical_classificationBase SequenceAmino Acid Transport System y+LCell BiologyMolecular biologyEnzyme ActivationEnzymeGene Expression RegulationchemistryTetradecanoylphorbol AcetateTetradecanoylphorbol AcetateLeucineAmerican Journal of Physiology-Cell Physiology
researchProduct

Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages

2014

Macrophages play a major role in the immune system, both as antimicrobial effector cells and as immunoregulatory cells, which induce, suppress or modulate adaptive immune responses. These key aspects of macrophage biology are fundamentally driven by the phenotype of macrophage arginine metabolism that is prevalent in an evolving or ongoing immune response. M1 macrophages express the enzyme nitric oxide synthase (NOS), which metabolizes arginine to nitric oxide (NO) and citrulline. NO can be metabolized to further downstream reactive nitrogen species, while citrulline might be reused for efficient NO synthesis via the citrulline-NO cycle. M2 macrophages are characterized by expression of the…

lcsh:Immunologic diseases. AllergyArginineMOUSE MACROPHAGESImmunologyReview ArticlemacrophageM1 and M2BiologyArginineamino acid transporterchemistry.chemical_compoundImmune systemALTERNATIVELY ACTIVATED MACROPHAGESCitrullineImmunology and AllergyMacrophageALVEOLAR MACROPHAGESIN-VIVOReactive nitrogen speciesMARROW-DERIVED MACROPHAGESScience & TechnologyT-CELL RESPONSESMOLECULAR-CLONINGArginaseImmunoregulationAcquired immune systemM2 MacrophageArginaseTUMOR-ASSOCIATED MACROPHAGESchemistryBiochemistryMURINE MACROPHAGESAMINO-ACID TRANSPORTERSNitric Oxide Synthaselcsh:RC581-607Life Sciences & BiomedicineFrontiers in Immunology
researchProduct

The cytoplasmic PASC domain of the sensor kinase DcuS of Escherichia coli : role in signal transduction, dimer formation, and DctA interaction

2013

The cytoplasmic PAS(C) domain of the fumarate responsive sensor kinase DcuS of Escherichia coli links the transmembrane to the kinase domain. PAS(C) is also required for interaction with the transporter DctA serving as a cosensor of DcuS. Earlier studies suggested that PAS(C) functions as a hinge and transmits the signal to the kinase. Reorganizing the PAS(C) dimer interaction and, independently, removal of DctA, converts DcuS to the constitutive ON state (active without fumarate stimulation). ON mutants were categorized with respect to these two biophysical interactions and the functional state of DcuS: type I-ON mutations grossly reorganize the homodimer, and decrease interaction with Dct…

PAS domainDicarboxylic Acid TransportersModels MolecularfumarateProtein ConformationEscherichia coli ProteinsDNA Mutational AnalysisDctAModels Biological570 Life sciencessignal transduction.Escherichia coliProtein Interaction Domains and MotifsProtein MultimerizationDcuS sensor kinaseProtein KinasesOriginal ResearchSignal Transduction570 Biowissenschaften
researchProduct

Functioning of DcuC as the C 4 -Dicarboxylate Carrier during Glucose Fermentation by Escherichia coli

1999

ABSTRACT The dcuC gene of Escherichia coli encodes an alternative C 4 -dicarboxylate carrier (DcuC) with low transport activity. The expression of dcuC was investigated. dcuC was expressed only under anaerobic conditions; nitrate and fumarate caused slight repression and stimulation of expression, respectively. Anaerobic induction depended mainly on the transcriptional regulator FNR. Fumarate stimulation was independent of the fumarate response regulator DcuR. The expression of dcuC was not significantly inhibited by glucose, assigning a role to DcuC during glucose fermentation. The inactivation of dcuC increased fumarate-succinate exchange and fumarate uptake by DcuA and DcuB, suggesting a…

Physiology and MetabolismMolecular Sequence DataMutantStimulationBiologymedicine.disease_causeMicrobiologyBacterial ProteinsFumaratesConsensus SequenceEscherichia colimedicineTranscriptional regulationDicarboxylic AcidsAnaerobiosisPromoter Regions GeneticMolecular BiologyEscherichia coliPsychological repressionDicarboxylic Acid TransportersBinding SitesBase SequenceEscherichia coli ProteinsSuccinatesGene Expression Regulation BacterialKineticsResponse regulatorGlucoseBiochemistryFermentationFermentationEffluxCarrier ProteinsRibosomesJournal of Bacteriology
researchProduct

Cationic Amino Acid Transporters (CATs)

2002

When the transport properties of mCAT-1 were described in 1991, the y+ carrier and major transporter for cationic amino acids seemed to be discovered. Today, we know that there are at least three different CAT isoforms that mediate y+ activity and the family might be growing. In addition, transport systems for cationic amino acids other than y + have been described and proteins that induce the respective transport activities have been identified. Consequently, the transport of cationic amino acids appears to be a complex process involving many proteins— carriers and possibly also regulatory proteins—whose expression is cell-specific and dependent on a variety of external stimuli. The multit…

chemistry.chemical_classificationGene isoformCATSmedicine.anatomical_structureBiochemistryChemistryCellmedicineCationic polymerizationTransporterCationic Amino Acid TransportersFunction (biology)Amino acid
researchProduct